Blocks of monodromy groups in complex dynamics
نویسندگان
چکیده
Motivated by a problem in complex dynamics, we examine the block structure of the natural action of iterated monodromy groups on the tree of preimages of a generic point. We show that in many cases, including when the polynomial has prime power degree, there are no large blocks other than those arising naturally from the tree structure. However, using a method of construction based on real graphs of polynomials, we exhibit a nontrivial example of a degree 6 polynomial failing to have this property. This example settles a problem raised in a recent paper of the second author regarding constant weighted sums of polynomials in the complex plane. We also show that degree 6 is exceptional in another regard, as it is the lowest degree for which the monodromy group of a polynomial is not determined by the combinatorics of the post-critical set. These results give new applications of iterated monodromy groups to complex dynamics.
منابع مشابه
Hyperbolic spaces from self-similar group actions
Self-similar group actions (or self-similar groups) have proved to be interesting mathematical objects from the point of view of group theory and from the point of view of many other fields of mathematics (operator algebras, holomorphic dynamics, automata theory, etc). See the works [BGN02, GNS00, Gri00, Sid98, BG00, Nek02a], where different aspects of self-similar groups are studied. An import...
متن کاملMonodromy at Infinity and the Weights of Cohomology
We show that the size of the Jordan blocks with eigenvalue one of the monodromy at infinity is estimated in terms of the weights of the cohomology of the total space and a general fiber. Let f : X → S be a morphism of complex algebraic varieties with relative dimension n. Assume S is a smooth curve. Let U be a dense open subvariety of S such that the H(Xs,Q) for s ∈ U form a local system (which...
متن کاملMonodromy problem for the degenerate critical points
For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...
متن کاملMonodromy groups of regular elliptic surfaces
Monodromy in analytic families of smooth complex surfaces yields groups of isotopy classes of orientation preserving diffeomorphisms for each family member X. For all deformation classes of minimal elliptic surfaces with p g > q = 0, we determine the monodromy group of a representative X, i.e. the group of isometries of the intersection lattice L X := H 2 / torsion generated by the monodromy ac...
متن کاملBraid Monodromy of Special Curves
In this article, we compute the braid monodromy of two algebraic curves defined over R. These two curves are of complex level not bigger than 6, and they are unions of lines and conics. We use two different techniques for computing their braid monodromies. These results will be applied to computations of fundamental groups of their complements in C and CP.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009